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A Parametric Study of Displacement Measurements Using Digital
Image Correlation Method

Kuendong Ha *
Technology Division, Samsung Display Devices Co., Ltd.

A detailed and thorough parametric study of digital image correlation method is presented.
A theoretical background and development of the method were introduced and the effects of
various parameters on the determination of displacement outputs from the raw original and
deformed image information were examined. Use of the normalized correlation coefficient, the
use of 20 to 40 pixels for a searching window side, 6 variables searching, bi-cubic spline
subpixel interpolations and the use of coarse-fine search are some of the key choices among the
results of parametric studies. The displacement outputs can be further processed with two
dimensional curve fitting for the data noise reduction as well as displacement gradient calcula­
tion.
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nique, Gray Intensity, Bi-Cubic Spline, Normalized Correlation Coefficient,
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1. Introduction

It is very important in the solid mechanics field
to use an accurate and convenient tool for experi­
mental strain analyses, especially for nonlinear
behavior of specimens with high strain gradients.
Measurements of surface displacements are often
used to develop and verify mechanical models

.under deformation. In fracture mechanics among
other topics, some novel experimental techniques
have been introduced to determine the strain field
around crack tips in validating theoretical con­
stitutive models for use in predicting crack
growth.

Among them, the digital image correlation
method (DICM) is one of many new experimen­
tal methods (Sutton, 1993). This method is one of
the surface coating methods in application of
photogrammic principles. Grid method uses the
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same photogrammic principle as that of DICM in
a sense that both methods compare two photo­
graphs before and after loading to extract the
displacement fields, but DICM implements a
computer vision instead of manual digitization to
get more efficient and accurate results.

Although DICM has been successfully applied
by others in a variety of applications, there has
not been an in-detail assessment of key parame­
ters in the measured full-field deformations. The
effect of the interpolation scheme, the number of
bits in the AID converter and the ratio of fre­
quency of the signal to the frequency of the data
sampling has been reported as the most signifi­
cant parameters (Sutton, 1987). However, the
latter two are not controllable parameters under a
given experimental set-up. It has been also report­
ed that a larger sub image provides greater accu­
racy in strain measurements, with little change in
resolution of the translation measurements
(Sutton, 1988). On the other hand, one requires
the use of smallest possible subimage while retain­
ing reasonable accuracy so that the representative
strain in the subimage not be smeared out over
unnecessarily large subimage area. Also, Knauss
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images in Fig. I reflects the deformation of biax­
ial strip specimen of inert solid propellant under
5% prescribed strain. For a close look, we can
observe the movements of the random patterns in
the same direction as the applied strain. A pixel is
a basic picture element in a camera sensor, called
charge coupled device (CCD) and its value
ranges from 0 to 255 when 8 bit AID convert is
employed. Its physical size depends on both cam­
era lens magnification for the focused image and
resolution of the CCD sensor. This lens magnifi­
cation should be constant and the painted surface
be well in focus throughout the deformation
process to get uniform scale in the digital images.

Let the surface of an object be under planar

deformation and i t», y) and f* (x", y*) are the
gray intensity functions corresponding to surfaces
of the undeformed and deformed configurations,
respectively. Also let's define a subimage or an
image subset to be a set of gray intensity patterns
enclosed by thick lines as shown in Fig. 2. If one
supposes that the intensity pattern after deforma­
tion is related to the initial intensities through the
object deformation, then this suggests that there
also exists a correlation between the two images
to detect the object deformation. That is, if we
assume that the paint coating on a surface loca­
tion sticks to that material position during the
deformation, then the gray level on one material
point is a unique marking which does not change
with deformation. Further we neglect the out-of­
plane displacement so that the subimage defor­
mation is approximated by in-plane deformation

and Vendroux (1994) reported that the use of a
least squares coefficient in the image comparison
gave almost the same displacement resolution
while increasing the computing speed and sim­
plifying the convergence algorithm as compared
to the results from the use of the maximum corre­
lation coefficient. To validate these assertions and
to find out other key parameters' roles in a
practical application for the best displacement
results using DICM in a given measuring system,
it becomes important and informative to conduct
a systemetic parametric study for all the relevant
variables during the image preparation to post
-processing stages. Another motivation is to pro­
vide some help for anyone interested or engaged
in DICM application to get better displacement
results in a given measuring system. The detailed
theory of deformation used for digital image
correlation algorithm with sub-pixel interpola­
tion will be briefly introduced before code valida­
tion and the experimental parametric investiga­
tion.

2. Theoretical Background

2.1 Theory of deformation for use in digital
image correlation

Consider an object that is illuminated by a
light source and the object is under deformation.
Digital image of a body is simply a discrete
record of the light intensities present at various
positions of the body. A speckle effect, or random
dot pattern, as shown at Fig. I can be generated
by a nonreflective spraying paint on a specimen
surface. The undeformed and deformed gray scale
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Fig. 1 Typical random black and white speckle
patterns (250 x 250 pixels)

(a) Undeformed (b) Deformed (5% t)
X,X'

Fig. 2 Deformation of sub image in a sampling grid
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where t; and TJ are the distance in the x-and y­
direction respectively from the center point to its

surrounding pixel location in the subimage,
defined as follows.

summation of absolute differences (Kahn-Jetter,

1989) and normalized correlation coefficient are
some of the available statistical measures. The

normalized least square error may be defined as

where fc and li* are the gray scales under undefor­
med and deformed configurations respectively as
defined above, and N denotes the number of

sampling points in the subimage. Normalized
correlation coefficient is expressed in a discrete

form as,

(4)
_ N (fi-/;*) 2

E-~ (255.255)'

t;=Ui+( ~~ )iLIx+( ~~ )iLIy (6)

TJ=Vi+( ~~ )iLIx+( ~~ )iLIy

A correlation coefficient of C= I indicates a
perfect match, C=O means no correlation and C
= - 1 means perfect mismatch.

SubpixeI Interpolation: Because the gray scale

intensity information is spatially discrete in
nature, no gray scale information is available
between each pixel position. In the minimization

process of the correlation function S = 1- C, it is
not always true for a deformed location, x* and
y* to be matched to the digitized pixel position

exactly. Therefore an approximation of gray level
values between each pixel position is needed. Bi
-linear interpolation approximates the gray inten­

sity value at a point (x*, y*), which is inside a
square with four corners of pixel positions at (i,
j), U+l, j), U, j+l) and U+I, j+l), by

1* = aoo+ alO • LIx'+ aOl • LIy'+ all •

LIx' • LIy'. (7)

Another interpolation method to fit the gray

intensity surface data is the use of bi-cubic
polynomial interpolation. The functional form of

gray scale at (x", y*) is,

1* (P*) =1* (x+ U(P), y+v(P»
=/(P) (1)

I*(Q*)=I*(x+u(Q), y+v(Q»
=/(Q)

u(Q)=u(P)+(~U)d"C+(aau) dv
ox p y p (2)

v(Q) =v(P) +( ~~ )pdx+( ~~ tdy

Substituting (2) into (1), we have

1* (Q*) =1*(x+u (P) +( ~~ td"C

+( ~~ tdy, y+v(P) +( ~~ td"C (3)

+( ~~ tdY)=/(Q).

and the local deformation within a small

subimage is linear in the initial coordinates.

Consider points P and Q in a subimage prior
to deformation that are located at positions (x,

y) and (x+dx, y+dy) as shown in Fig. 2. After
deformation the points P and Q move to P* and

Q*. Then P* and Q* would be traced from P
and Q using the linear deformation relations such
that,

From Taylor's expansion of displacement func­

tions u tx, y) and v(x, y) about P up to the first
order,

The deformed center point in the subimage, P
may be found from the gray intensity patterns I
(Q) and 1* (Q*) at the points surrounding P.
There are six variables to be determined in Eq.

(3), i. e., u(P), v(P), ( ~~ t, (~~ t, (~~ t,
(~~ t from intensity patterns on P* and Q* in

the deformed image by matching them to those for

the positions P and Q in the undeformed image.

For each trial set of u.; Vi, ( ~~ )., ( ~~ )., ( ~~ ) i

and (~~) i evaluated at P, the searching

subimage of intensity patterns are compared to
the target subimage in the deformed configuration
using a statistical measure of correlation, to repre­
sent the pattern-matching quality. Specifically,

the normalized least square differences of gray
intensities of the two images (Knauss, 1994),
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f* = aoo + alO • LIx' + a20 • (LIx') 2+aao· (LIx') 3

+ aOl • LIy'+ a02· (LIy') 2 +a03 • (LIy') 3

+ all • LIx' • LIy'+ a21 • (LIx') 2 • LIy'+a31

• (LIx') 3 • LIy'+ a12· (LIy') 2 • LIx' +an

• (LIy') 2. (LIx') 2+ a23 • (LIy') 2. (LIx') 3

+ a33 • (LIy') 3. (LIx') 3 (8)

where LIx', LIy'=x and y distance from pixel (i,

j),
aoo=gray intensity level of pixel (i, j), alO=

gray intensity level of pixel (i, j) - aoo, aOl = gray
intensity level of pixel (i, j +1) - aoo, all = gray
level of pixel (i +1, j + I) - aoo- alO- am
and the remaining afj's are determined using the
continuation conditions of the first and cross
derivatives of f* at integer pixel locations.

2.2 Verification of the digital image corre­
lation method

To find out the optimum values of 6 variables
of the center point in a subimage in Eq. (3), it is
necessary to seek the optimization of C or S = I
- C by changing all the variables in a sufficiently
wide range. To make this process more efficient,
so called "coarse-fine" searching method (Sutton,
1986) may be employed. If one can narrow down
the searching window range of u, v of the center
point to be within 1 or 2 pixels width so that no
other local maximum point can be exist, we may
use the Newton-Raphson method to locate the
center point to the best pattern matching position
in the deformed subimage through the value of
local maximum coefficient.

A computer program for a series of displace­
ment measurements of many subimage centers
was developed to implement this local optimiza­
tion algorithm by use of digitized image informa­
tions before and after the deformation. In order to
determine the utility of the proposed method,
three sets of experiments were performed. They
are: (l) verification of code through image fabri­
cation, (2) translation tests and (3) uniaxial
tension tests.

It is very important to check if there are any
mistakes in the computer program. The best way
of doing so would be to create a image of known
movement from the reference subimage of gray

intensities (Sutton, 1995). From the random inte­
ger array between 0 and 255 for an original image
and through the bi-linear interpolation, if the
pixel position of deformed subimage falls between
integer pixels of the sampling positions, the
deformed image can be fabricated. Both transla­
tion and linear deformations were applied as if we
had ideal experimental conditions between the
images before and after the deformation. The
images used were 200 by 200 pixels and data
sampling for DICM was performed at 9 points (3

columns in a row). The verification test for a
deformed image with uniform translations
predicted almost exactly the same movement, as
the maximum error was less than 0.006 pixel,
which corresponds to less than 0.1% deviation
from the imposed displacement. The error is
purely from the numerical manipulation process
in the algorithm including truncation errors in the
interpolation process. Note that the synthesized
picture was fabricated by using bi-Iinear interpo­
lation for simplicity, while the DICM scheme uses
bi-cubic interpolation. The deviation of the
predicted displacements from the imposed dis­
placements are within an acceptable error bound
and hence, it is believed that the DICM routine is
verified. The higher error in strain implies that
the error source may be amplified in strain calcu­
lated from displacement due to the differentiation
of error (Mostafavi, 1978).

A rigid body translation test is the simplest
displacement case that can be measured by the
DICM. Rigid body translation tests are frequently
used for pin-pointing the displacement error
estimation. Positioning errors are reported on the
order of 0.1 pixel (Sutton, 1983) for carefully
prepared specimen surfaces, low magnifications,
and optimum lighting. The rigid body translation
experiments and spatial calibrations were perfor­
med in the same relatively simple arrangement
following Stanglmaier (1993). The test apparatus
is shown in Fig. 3. A micrometer with a 0.01 mm
resolution was used to displace a commercially
available yellow rubber band specimen horizon­
tally across the translation table. Such a calibra­
tion is performed by tracking down a target point,
since the micrometer indicates the true translation
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displacement of the target.
Rigid body translation tests were performed by

moving the translation table by a known amount,
and the displacements of forty nine points of 7
columns by 7 rows in a image were measured
using the DICM, and a statistical analysis was
performed. These forty nine points were centered
within a small (40 by 40 pixels) subimage of an
undeformed image. Figure 4(a) contains the
horizontal displacement (u) measurements for an
experiment in which a black rubber specimen was

CD Micrometer with 0.01 mm Resolution
Ci) Base
@ Translation Table
® Stand
CID Uniaxial Rubberband Specimen

Fig. 3 Apparatus for rigid body translation tests
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displaced by 0.05 mm, which corresponds to 5.35
pixels in horizontal movement and -0.128 pixel
in vertical movement (v). The averaged displace­
ment measurements were 5.267 pixels and -0.256
pixel. All horizontal and vertical displacements
were within 0.1 pixel of the average, and standard
deviations were 0.0028 and 0.0029 pixel, respec­
tively. The results of these rigid body translation
tests suggest that conservative positioning error of
the DIC method be taken to be within 0.1 pixel.
This positioning error is independent of the dis­
placement magnitude because the error is not
sensitive to the "offset" of the two comparison
images. It is comparable to the accuracy reported
by others (Sutton, 1987).

A strip of commercially available rubber band
was cut to a length of 60.0 mm, width of 5.0 mm
and thickness of 0.71 mm. The apparatus used
was very similar to the one in Fig. 3 used for rigid
body translation test, except that one end of the
rubber specimen is fixed while the other end is
moves together with the micrometer, giving rise to
uniform strain in most of the specimen. The
specimen gage length was considered to be the
total distance between the grips, which held the
specimen in place by pressing both ends with a
small aluminum plate against its base and the
stand. A total of five different "strained" stages
were recorded, and measurements were taken at
11-13 data points that were uniformly spaced
along the mid line of the rubber strip specimen.
Figure 4(b) shows the measured horizontal dis­
placements in which a rubber band specimen was

.-_,.....Jo.fIMIB ....",.

lA.-,'------------------..
'"

... .- ... ....

(a) Rigid body translation of black rubber (b) u vs. x (3.6% global strain imposed)

Fig. 4 Typical experimental results for verification of DIeM measurements
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(ll)

n n
/(x, y) =~ ~CU5i(X) Sj(y) (l0)

i=l i=1

where co's are bi-cubic spline coefficients and s,
(x), Sj(y) are expressed in terms of polynomials
upto third order in x and y, respectively (Ha,
1996). For example, the basis functions 5i(X) are
polynomials such as,

(9)

for X<Xi

for Xi:-;;:X<Xi+1

for Xi 2:X,

n n n r:
([)(f) =~ li (f(Xi, Yi) -ZU)2+ ,u~)Xl

(~~ydx +,ufd1.Y"(
~;Ydy + ,u2fd

nlxn [Yn( aaf )22:: --3-3 dxdy
j;1 Xl Yl dX dY

where Zu is a set of data at (Xi> yJ, ,u IS a
smoothing parameter, f is a bi-cubic spline func­

tion and n, n are numbers of data in x and y
directions, respectively. The displacement func­
tion f (x, y) can be expressed as a combination of

products of basis functions s, (x) and Sj (y) in
the x and y directions, such as

geous to formulate a smoothed, approximate rep­

resentation of the measured values. Least-square
algorithms have been used effectively to eliminate
the noise from underlying signal.

One technique that is often well-suited for this

purpose is the use of spline functions. In our
study, Dohrmann and Busby's two dimensional

smoothing algorithm (Dohrmann, 1990) was
selected. The algorithm uses Wahba's (l975)

generalized cross validation (GCY) method to

determine the level of noise internally and
optimally smooth two dimensional data in a
rectangular grid with uniform interval in each
direction.

The two dimensional smoothing problem
requires finding the bi-cubic spline which mini­
mizes the function sp,

51 (X) =1
52(X) = (X-XI)

53(X) = (X-XI)2

o

!
(X - X;) 3/ 6

5HI(X) = h3/6+h2(x-Xi+l)

+h(X-Xi+l)2/2

and Sj(Y) is defined similarly as Eq. (11) in
terms of y and j instead of X and i, respectively.

Applied Measured Difference
Stages Strain(%) Strain(%) (%)

2 0.42 0.40 5.0

3 1.48 1.32 3.4

4 2.54 2.51 1.2

5 3.60 3.60 0.0

6 4.66 4.71 l.l

Table 1 Summary of strain measurements

strained to global strains of 3.60%. The linear
least square fittings of displacement data are also

shown on the plot and the slope is 3.60% of
almost uniform horizontal strain, which is very
close to the imposed nominal strain. Table I

shows the comparison between the imposed and

measured strains from five different strained
images. The experimental measurements are in
quite good agreements with the imposed global
strains. The maximum error from the expected

uniform strain prediction is about 5% for 0.42%
global strain, as summarized on Table 1. Notic­
ing how the effect of the positioning displacement
error of the DICM decreases with increasing
strain levels, the error could be from noise due to
small strain signal. It should be pointed out that

the noise from displacement data, which could be
either from inherent limitations of the DICM or
from precision tolerance of the equipment, can be
determined and removed from the data without
altering the character of the underlying displace­
ment using the so-called 'smoothing technique'
(Busby, 1988).

2.3 Determination of displacement and str­
ain field

In many cases, the equipment and techniques
have inherent limitations which manifest them­

selves as noise in the data. When the noise is
unknown or noisy data is too ambiguous to
interpret, some technique is required to identify

and separate the noise from the data. Consequent­
ly it is unwise to construct an interpolation func­
tion which agrees precisely with the measured
displacements at input locations. Particularly if
derivatives are sought, it is normally advanta-
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The hi-cubic spline displacement function !
J<k+l)!

and its derivatives JXkJyl (k, 1=1,2) are contin-

uous over the entire rectangular grid because
basis functions and their derivatives up to second
order are continuous. The value of the smoothing
parameter f-l can greatly affect the result. If it is
too big, the third derivatives of ! is forced to
vanish, resulting in a two dimensional least
square bi-cubic fit. Choosing f-l too small gives
unsatisfactory roughness, especially in deriva­
tives.

Once the smoothed displacement field is deter­
mined in the form of two dimensional cubic
spline functions, as given inEq. (10), the smooth­
ed displacement outputs are assumed free of
experimental noise. Then the strain outputs are
directly available from their differentiations with
respect to x and y when the small strain measure
is used, that is

measuring situation to DICM so that the effect of
each parameter on DICM performance can be
more pronounce. A schematic of the set-up is
shown in Fig. 5. It is important that the camera
lens plane in front of the specimen be parallel to
the specimen surface and the surface mid-line be
aligned spatially with a horizontal line to prevent
any focusing problem. The displacement field in
the test at all the data points ranged from 20
pixels to 85 pixels in the vertical movement and
35 pixels to 87 pixels in the horizontal movement
with 100 pixels/rnrn scale factor. The effect of
subimage window size, the effect of sub-pixel
interpolation scheme and the effect of number of
variables in the matching process are studied over
837 data points. The comparisons for each item
were made based on the normalized correlation
coefficient and the standard deviations of dis­
placements. Table 2 summarizes this study.

Fig. 5 Test set-up for high accuracy image system

cx= ~~ , cy= ~~, YXY=( ~~ + ~~ ). (12)

From whole field strain data, part of columns
or rows data may be extracted for the area of
interest and overlaid for further post-processing.

3. Experimental Parameter Study

The undeformed and deformed images of the
biaxial specimen of inert solid propellant under
7% global strain focused on the left side edge
were tried for the parameter study. The material
consists of 70% volume of hard particles with
varying sizes (10-100 ,um) embedded in a soft
rubber binder. Here a solid propellant specimen
was selected because this material shows large
strains and rotations around its rigid particles
which in turn is suitable for providing tough

AppleComputer

Frame-Grabber Board

R:1D"\.

~~
Personal
Computer

X-YPlotter

Instron
Control
Tower

Table 2 Results of parameter study

# Variables n=2 n=6

Int. Scheme Bi-Linear Si-Cubic B I -Linear Bi-Cubic

subset szie 20x20 50x50 20x20 50x50 20x20 50x50 20x20 50x50

Average C 0.87 0.83 0.90 0.82 0.917 0.92 0.93 0.90

(J 0.114 0.063 0.072 0.063 0.057 0.047 0.057 0.048
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(a) Normalized least square difference (b) Normalized correlation coefficient

Fig. 6 Surface plot comparison of pattern matching measures around maximum point

The effect of subimage window size : The 20
by 20 pixels subimage window size resulted in
higher correlation coefficient, higher standard
deviation than those from 50 by 50 subimage
window as given in Table 2. This can be ex­
plained by the fact the standard deviation is
higher because there is less pixel data points in
the 20 by 20 sub image window than those in the
50 by 50 window and the coefficient is higher
because it is easier to match the deformed
subimage of smaller size than that of a bigger size.
In a separate test, 4 by 4 pixels subimage was used
for the second search in subpixel restoration after
the initial search. The results were not particular­
ly better than those with the window size from 20
to 50 pixels on a side. The window size from 20
pixels to 50 pixels in each side showed very close
agreement with each other. As a summary, even
though the differences are small, 20 by 20 window
gives locally more accurate matching point. On
the other hand, this will make it easier for the
DICM results to be contaminated by experimental
noise in the data or a false image registration, if
any.

The choice of subimage pattern matching
measure: The use of least square error in Eq. (4)
as a criterion for the best image matching was
tried several times in a few preliminary tests.
Figure 6(a) and (b) show three dimensional
plots of (0.1 -least square error) and normal­
ized correlation coefficient around the local
maximum point. Here the height at each pixel

coordinate means the measure of how well the
searching subimage matches to the target
subimage with its center at that position. As
shown in the figure, both criteria indicate the
displacement of the searching subimage center for
the best image-matching condition at (73.7, 171.
9). The correlation coefficient in Fig. 6 (b) shows
slightly sharper concave upward surface around
the local maximum point than the least square
error in Fig. 6 (a). For example, (0.1 -least
square error) value on (72,169) position corre­
sponds to about 81.0% of the maximum value
while for normalized correlation coefficient case,
it is about 45.2% of the maximum value. Each
surface slope to local maximum at the same
position of searching subimage more or less sig­
nifies better pattern-matching quality in the con­
vergence rate and accuracy of the final displace­
ment of the searching subimage center. In a very
few cases, this minor disadvantage of least square
measure caused additional problems to the
searching subimage such as, oscillations around
the local maximum or even passing by the local
maximum location. Therefore, to avoid any pos­
sibilitiys on convergence problem and to get the
maximum accuracy, the use of normalized corre­
lation coefficient is the best choice for DICM.
This hypothesis is supported by the author's
numerous personal experiences (Ha, 1996) as
well as addressed by other researchers, e. g., Tian
and Huhns (1983).

Searching algorithm with six variables or two
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(a) with bi-Iinear interpolation
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Fig. 7 Light Intensity Surfaces with Interpolation

variables : The linear deformation theory in
searching and matching intensity patterns in the
DICM algorithm supposedly gives the optimum
six variables regarding center point P in Fig. 2 of
the deformed subimage, i. e., u (P), v (P),

(k ) ,(k) ,(~) ,(k) . Inasmuch asox p ay p ox p ay p

the latter four gradient terms do not directly
contribute to the displacement determination
process which functions as the fine-tuning terms
for the primary varaiables, u and v in Eq. (2),
these four variables sometimes manifested them­
selves in non-physical erroneous values. It is
checked if these erroneous gradient terms may
work against locating accurate displacements by
trying searching with and without these four
gradient terms. After comparing the results for
both cases of n=2 and n=6 as shown in Tables
2, it was found that the searching algorithm with
six variables resulted in higher correlation coeffi­
cient and more consistant correlations (smaller
standard deviation on C) than the case of search­
ing with two variables. This means that these four
variables are not directly connected into the
subimage deformation, but they work more math­
ematically for better correlation value after pri­
mary positioning of the subimage governed by u
and u. Nevertheless, the effect of the number of
variables is not considered to be a critical one,
provided fine search is performed after initial the
coarse search to confine the searching area, espe­
cially for the cases of searching with smaller
subimage window size, e. g., 10 by 10 pixels,

The effect of interpolation scheme: Bi-Iinear
and bi-cubic interpolation scheme as defined in
Eq. (7) and Eq. (8) were compared for the sub
-pixel interpolation scheme. The examples of
three dimensional images interpolated as such are
shown in Fig. 7. As we may notice in the figure,
the one from hi-cubic interpolation scheme in
Fig. 7 (a) looks much smoother and more natural
than the one from bi-Iinear interpolation. The
performance comparison of the two is also given
in Table 2. For the averaged normalized correla­
tion coefficient value with almost the same stan­
dard deviation, bi-cubic interpolation scheme
gives a clear advantage over the bi-Iinear interpo­
lation scheme.

The effect of Rigid Body Rotation: Raw data
images should be compensated for the rotation of
the aluminum pulling grips before the image­
matching analyses using DICM. The rotation of
the grips in the process of specimen deformation
can be monitored from the LVDT's secured in the
holes near the edges of the grips, as shown in Fig.
5. To compensate for the skewed image due to an
initial camera rotation in the optical set-up, the
original image should be rotated back so that they
are well aligned with a spatial horizontal line.
After the separation of possible image misalign­
ment, a grip rotation due to the non uniform
deformation can be compensated for the elimina­
tion of rigid body rotation. For a simple compen­
sation example of grip rotation, refer to Ha
(1996). Figure 8(a) shows a typical result of the
grip rotation for the biaxial strip specimen of
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(a) Relative grip rotation of biaxial specimen (b) Rigid body rotation angle around crack tip

Fig. 8 Separation and Monitoring of Rigid Body Rotation Components

inert solid propellant. In the figure, the maximum
rotation is less than 0.06°. This specimen typically
failed just before the large grip rotation began as
indicated in Fig. 8 (a). The wake region behind
the crack-lip line usually underwent some rigid
body rotation as the crack growth continued and
its angle is overlaid on the picture of crack tip in
Fig. 8 (b). The rigid body rotation angle, () was
calculated through the use of Lagrangian strain
tensor cL and Polar Decomposition Theorem;
when we denote F and C as in-plane deforma­
tion tensor and right Cauchy-Green tensor,
defined as F=(l+\7u), C=FTF respectively,
the rigid body rotation part of the deformation
process, Q can be computed from,

Q=F(JC)-l=(C~S() -Sin()). (13)
sm() cos()

For the safe side as Knauss (1994) pointed out, it
would be best to use finite strain measurement
allowing for large rotations.

The effect of image equalization : It is very
important to prepare the raw images with high
contrast and good focus. In that sense, it seems
very plausible that to maximize the contrast of the
raw images, some of image processing skills may
be used to improve the contrast between the pixels
of the lowest to highest gray scale in the image.
An equalizing process in image processing is a
way to enhance the contrast of a gray scaled
image by extrapolating the range of the gray scale
employed in the original image into the maximum
range of 0 to 255 gray scale. From the analysis,

the image looks better after equalization, but it
does not give any better displacement or strain
contour map than those from the original images.

The effect of removing erroneous data: It was
observed that in a few cases, there were obvious
local displacement errors from the initial data
sources, e. g. blurred images, big spots of the same
light intensity and similar gray patterns among
others. Usually the number of points was not
significant, at most two or three points, even
though in most cases there were no such bad data
outputs at all. Using the surface fitting scheme,
those points were eliminated before the displace­
ment fittings for strain calculations and inter­
polated by surrounding data points. The compari­
son with and without this scheme revealed this
correction process helped a bit locally when
correlation coefficient of less than 0.8 were used
for the criterion of the bad data selection.

The effect of out-of-plane displacement: The
influence of out-of-plane displacement, w on in
-plane strain Cy, for example, can be assessed
from finite strain magnitude, i. e. from the La­
grangian strain, c~. Let u, v be the in-plane
displacements in the x and y-direction respective­
ly. Then

From Eq. (14), it should be assured that the

term (~~) 2 is negligible in comparison to 2 ~~
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Fig. 9 Surface contour maps in the right side of specimen with a central crack

to get rid of the influence of w. If w is found to
be insignificant in the calculation of in-plane
strains as was the case for the given material
(Post, 1987), then the influence of w in DICM
algorithm is also negligible.

It should be noted that each item of the above
parametric studies is an independent process
which could be considered separately without
affecting the conditions of other parameters. Some
of the items in the above parametric studies are
related to post-processing skills and initial enhan­
cement of original digital images. Other variables,
such as number of variables and subimage size in
the search algorithm are independent with each
other. Therefore it is assumed that there is no
coupling effect between the parameters.

In most of other experimental applications, bi­
cubic interpolation, window size of 30 to 40
pixels a side, six variables searching, normalized
correlation coefficient were selected and used.
Any rigid body rotations due to the initial camera
misalignment was compensated by rotating back
before running DICM computer codes. In a high-

Iy deformed area like crack tip region and near
the crack lips, false matching results were report­
ed in a few points. The change of subimage
window size, usually to a smaller one, change of
the searching point to a very near neighborhood
and replacement of bad points with interpolated
ones with surrounding data solved these bad
correlation cases. Figure 9 ill ustrates typical
examples of horizontal and vertical surface dis­
placement and strain fields determined from the
DICM with the optimal parameters decided using
the method described above for a bi-axial speci­
men with a central thru-crack under 5% global
strain.

4. Conclusions

Surface deformation measurement skill called
Digital Image Correlation Method is described
and verified through image fabrication, rigid
body translation and uniaxial tension tests. The
estimates of errors are found to be within 0.1 pixel
from the inherent test method limitation. Through
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parametric study for the effects of all the possible
variables, including the subimage size, the image­

matching criterion, the number of variables and
sub-pixel interpolation scheme on the perfor­

mance of DICM were conducted using a uniaxial
tension test. The use of six variables for searching

subimage, with 30 to 40 pixels of a subimage in a
side and bi-cubic spline subpixel interpolation
method and maximum correlation coefficient are

best suited for the best displacement results. In
determination of strain field, it is recommended to

use bigger subimage for displacement curve fitting
to get smooth strain field and smaller subimage
for local correction of abnormal strain field. The
displacement fields are to be processed by
smoothing technique for noise reduction and

strain field calculations.
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